X^2-3x+10/12=2x^2-2x+8/12

Simple and best practice solution for X^2-3x+10/12=2x^2-2x+8/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2-3x+10/12=2x^2-2x+8/12 equation:



X^2-3X+10/12=2X^2-2X+8/12
We move all terms to the left:
X^2-3X+10/12-(2X^2-2X+8/12)=0
We get rid of parentheses
X^2-2X^2-3X+2X-8/12+10/12=0
We multiply all the terms by the denominator
X^2*12-2X^2*12-3X*12+2X*12-8+10=0
We add all the numbers together, and all the variables
X^2*12-2X^2*12-3X*12+2X*12+2=0
Wy multiply elements
12X^2-24X^2-36X+24X+2=0
We add all the numbers together, and all the variables
-12X^2-12X+2=0
a = -12; b = -12; c = +2;
Δ = b2-4ac
Δ = -122-4·(-12)·2
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{15}}{2*-12}=\frac{12-4\sqrt{15}}{-24} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{15}}{2*-12}=\frac{12+4\sqrt{15}}{-24} $

See similar equations:

| 0.2x-23+0.2x-49=90 | | 4r=9 | | 17y-23=23y+16 | | 0.2x-23+0.2x-43=90 | | 4g=92=53 | | X^2-3x+10/12=2x^2-2x+8 | | 4(5x+3)=-68 | | 0.4x+98=90 | | 6x-x2=8 | | 2x-3=1,5x+4 | | 8x=20.16 | | (x-4)×(2x-5)=0 | | 2x-3=1,5+4 | | 50x=375 | | 7+x^2=0 | | -2v-32=-9(v+2) | | (X+2)+(2x-1)=28 | | 8/3=y/7 | | 5(x-2)=1/2(X+7) | | 999+999x=999 | | 0.55=0.45(a×a) | | 0.55=0.45a^2 | | 0=2.8/x | | 6-9x=39 | | 4(x-5)-7(7x-9)=19 | | 7/6*x=25 | | 9n-14=6n-29 | | 4(3x-5)=5x+2(x+5) | | d+11/2=4 | | 2k-2/8-k=1/3 | | (3x+2)^2=20 | | 1-1x=-5-3x |

Equations solver categories